pipeKSamplerAdvanced¶
Documentation¶
- Class name:
ttN pipeKSamplerAdvanced_v2
- Category:
🌏 tinyterra/pipe
- Output node:
True
This node is designed for advanced sampling in image generation pipelines, incorporating various enhancements and options for customization. It leverages a combination of models, embeddings, and sampling techniques to refine and generate high-quality images based on specified parameters, offering extensive control over the image generation process.
Input types¶
Required¶
pipe
- Represents the current state of the image generation pipeline, including models, embeddings, and other relevant settings, serving as the foundation for the sampling process.
- Comfy dtype:
PIPE_LINE
- Python dtype:
dict
lora_name
- Specifies the name of the LoRA model to be used for adjusting model weights dynamically, enhancing the generation process.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
lora_strength
- Determines the strength of the LoRA adjustment to the model, allowing for fine-tuning of the generated images.
- Comfy dtype:
FLOAT
- Python dtype:
float
upscale_method
- Specifies the method to be used for upscaling the generated images, enhancing their resolution.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
upscale_model_name
- Identifies the specific model to be used for upscaling, affecting the quality of the upscaled images.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
factor
- Determines the factor by which the images are upscaled, directly influencing the final image size.
- Comfy dtype:
FLOAT
- Python dtype:
float
rescale
- Controls whether the generated images are rescaled, affecting their dimensions and aspect ratio.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
bool
percent
- Specifies the percentage by which the images are rescaled, offering precise control over the output size.
- Comfy dtype:
INT
- Python dtype:
float
width
- Sets the target width for rescaled images, defining their horizontal dimension.
- Comfy dtype:
INT
- Python dtype:
int
height
- Sets the target height for rescaled images, defining their vertical dimension.
- Comfy dtype:
INT
- Python dtype:
int
longer_side
- Specifies the length of the longer side for rescaled images, ensuring a balanced aspect ratio.
- Comfy dtype:
INT
- Python dtype:
int
crop
- Determines whether and how the generated images are cropped, affecting their composition and focus.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
add_noise
- Controls whether noise is added to the generation process, affecting the texture and details of the generated images.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
noise
- Specifies the amount and type of noise to be added, if any, during the image generation process.
- Comfy dtype:
FLOAT
- Python dtype:
float
steps
- Specifies the number of steps to be taken in the sampling process, impacting the detail and quality of the generated images.
- Comfy dtype:
INT
- Python dtype:
int
start_at_step
- Specifies the starting step for the generation process, allowing for mid-process intervention or customization.
- Comfy dtype:
INT
- Python dtype:
int
end_at_step
- Defines the ending step for the generation process, determining the point at which the process concludes.
- Comfy dtype:
INT
- Python dtype:
int
cfg
- Configuration setting that influences the sampling behavior, offering additional customization of the image generation.
- Comfy dtype:
FLOAT
- Python dtype:
float
sampler_name
- Identifies the specific sampling algorithm to be used, affecting the style and characteristics of the generated images.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
scheduler
- Determines the scheduling algorithm for the sampling process, influencing the progression and variation of image generation.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
return_with_leftover_noise
- Controls whether leftover noise is included in the final output, affecting the texture and detail of the generated images.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
image_output
- Specifies the mode of output for the generated images, including options for hiding or saving the images.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
save_prefix
- Defines a prefix for saved image files, organizing the output in a structured manner.
- Comfy dtype:
STRING
- Python dtype:
str
file_type
- Specifies the file type for saved images, allowing for flexibility in the output format.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
embed_workflow
- Indicates whether the embedding workflow is included in the generation process, affecting the input and refinement of images.
- Comfy dtype:
BOOLEAN
- Python dtype:
bool
Optional¶
noise_seed
- Sets a specific seed for noise generation, ensuring reproducibility of the added noise effects.
- Comfy dtype:
INT
- Python dtype:
int
optional_model
- Allows for the specification of an alternative model to be used in the generation process, offering flexibility in the approach.
- Comfy dtype:
MODEL
- Python dtype:
str
optional_positive
- Specifies optional positive embeddings to be used, enhancing the generation towards desired attributes.
- Comfy dtype:
CONDITIONING
- Python dtype:
str
optional_negative
- Specifies optional negative embeddings to be used, steering the generation away from certain attributes.
- Comfy dtype:
CONDITIONING
- Python dtype:
str
optional_latent
- Allows for the inclusion of specific latent vectors, directly influencing the starting point of the generation process.
- Comfy dtype:
LATENT
- Python dtype:
str
optional_vae
- Specifies an optional VAE model to be used for decoding or refining the generated images.
- Comfy dtype:
VAE
- Python dtype:
str
optional_clip
- Specifies an optional CLIP model to be used for guiding the generation process towards textual descriptions.
- Comfy dtype:
CLIP
- Python dtype:
str
input_image_override
- Allows for an existing image to be used as the starting point for the generation process, overriding the default behavior.
- Comfy dtype:
IMAGE
- Python dtype:
str
adv_xyPlot
- Enables advanced plotting options for visualizing the generation process, offering insights into the sampling dynamics.
- Comfy dtype:
ADV_XYPLOT
- Python dtype:
str
Output types¶
pipe
- Comfy dtype:
PIPE_LINE
- unknown
- Python dtype:
unknown
- Comfy dtype:
model
- Comfy dtype:
MODEL
- unknown
- Python dtype:
unknown
- Comfy dtype:
positive
- Comfy dtype:
CONDITIONING
- unknown
- Python dtype:
unknown
- Comfy dtype:
negative
- Comfy dtype:
CONDITIONING
- unknown
- Python dtype:
unknown
- Comfy dtype:
latent
- Comfy dtype:
LATENT
- unknown
- Python dtype:
unknown
- Comfy dtype:
vae
- Comfy dtype:
VAE
- unknown
- Python dtype:
unknown
- Comfy dtype:
clip
- Comfy dtype:
CLIP
- unknown
- Python dtype:
unknown
- Comfy dtype:
image
- Comfy dtype:
IMAGE
- unknown
- Python dtype:
unknown
- Comfy dtype:
seed
- Comfy dtype:
INT
- unknown
- Python dtype:
unknown
- Comfy dtype:
ui
- Provides a user interface component for visualizing the generated images, offering an interactive way to review and adjust the output.
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class ttN_pipeKSamplerAdvanced_v2:
version = '2.3.0'
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"pipe": ("PIPE_LINE",),
"lora_name": (["None"] + folder_paths.get_filename_list("loras"),),
"lora_strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"upscale_method": (UPSCALE_METHODS, {"default": "None"}),
"upscale_model_name": (UPSCALE_MODELS,),
"factor": ("FLOAT", {"default": 2, "min": 0.0, "max": 10.0, "step": 0.25}),
"rescale": (["by percentage", "to Width/Height", 'to longer side - maintain aspect', 'None'],),
"percent": ("INT", {"default": 50, "min": 0, "max": 1000, "step": 1}),
"width": ("INT", {"default": 1024, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 1024, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"longer_side": ("INT", {"default": 1024, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"crop": (CROP_METHODS,),
"add_noise": (["enable", "disable"], ),
"noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
"end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS + CUSTOM_SCHEDULERS,),
"return_with_leftover_noise": (["disable", "enable"], ),
"image_output": (["Hide", "Preview", "Save", "Hide/Save", "Disabled"],),
"save_prefix": ("STRING", {"default": "ComfyUI"}),
"file_type": (OUTPUT_FILETYPES,{"default": "png"}),
"embed_workflow": ("BOOLEAN", {"default": True}),
},
"optional": {
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"optional_model": ("MODEL",),
"optional_positive": ("CONDITIONING",),
"optional_negative": ("CONDITIONING",),
"optional_latent": ("LATENT",),
"optional_vae": ("VAE",),
"optional_clip": ("CLIP",),
"input_image_override": ("IMAGE",),
"adv_xyPlot": ("ADV_XYPLOT",),
},
"hidden": {
"prompt": "PROMPT",
"extra_pnginfo": "EXTRA_PNGINFO",
"my_unique_id": "UNIQUE_ID",
"ttNnodeVersion": ttN_pipeKSamplerAdvanced_v2.version
},
}
RETURN_TYPES = ("PIPE_LINE", "MODEL", "CONDITIONING", "CONDITIONING", "LATENT", "VAE", "CLIP", "IMAGE", "INT", )
RETURN_NAMES = ("pipe", "model", "positive", "negative", "latent","vae", "clip", "image", "seed", )
OUTPUT_NODE = True
FUNCTION = "adv_sample"
CATEGORY = "🌏 tinyterra/pipe"
def adv_sample(self, pipe,
lora_name, lora_strength,
add_noise, steps, cfg, sampler_name, scheduler, image_output, save_prefix, file_type, embed_workflow, noise,
noise_seed=None, optional_model=None, optional_positive=None, optional_negative=None, optional_latent=None, optional_vae=None, optional_clip=None, input_image_override=None, adv_xyPlot=None, upscale_method=None, upscale_model_name=None, factor=None, rescale=None, percent=None, width=None, height=None, longer_side=None, crop=None, prompt=None, extra_pnginfo=None, my_unique_id=None, start_at_step=None, end_at_step=None, return_with_leftover_noise=False):
force_full_denoise = True
if return_with_leftover_noise == "enable":
force_full_denoise = False
disable_noise = False
if add_noise == "disable":
disable_noise = True
return ttN_pipeKSampler_v2.sample(self, pipe, lora_name, lora_strength, steps, cfg, sampler_name, scheduler, image_output, save_prefix, file_type, embed_workflow, noise,
optional_model, optional_positive, optional_negative, optional_latent, optional_vae, optional_clip, input_image_override, noise_seed, adv_xyPlot, upscale_model_name, upscale_method, factor, rescale, percent, width, height, longer_side, crop, prompt, extra_pnginfo, my_unique_id, start_at_step, end_at_step, force_full_denoise, disable_noise)