Smooth Mask Regions¶
Documentation¶
- Class name:
SaltMaskSmoothRegion
- Category:
SALT/Masking/Filter
- Output node:
False
The SaltMaskSmoothRegion node applies a smoothing filter to regions within masks, utilizing a specified sigma value to control the smoothness level. This process enhances the visual quality of mask regions by reducing noise and irregularities.
Input types¶
Required¶
masks
- The 'masks' parameter represents the input masks on which the smoothing operation is to be performed, serving as the primary data for the node's processing.
- Comfy dtype:
MASK
- Python dtype:
torch.Tensor
sigma
- The 'sigma' parameter controls the smoothness level of the smoothing filter applied to the mask regions, directly influencing the degree of smoothing and noise reduction.
- Comfy dtype:
FLOAT
- Python dtype:
float
Output types¶
MASKS
- Comfy dtype:
MASK
- The output is a tensor of masks that have been smoothed according to the specified sigma value, offering enhanced visual quality by reducing noise and irregularities.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class SaltMaskSmoothRegion:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"masks": ("MASK",),
"sigma": ("FLOAT", {"default":5.0, "min":0.0, "max":128.0, "step":0.1}),
}
}
CATEGORY = f"{NAME}/Masking/Filter"
RETURN_TYPES = ("MASK",)
RETURN_NAMES = ("MASKS",)
FUNCTION = "smooth_region"
def smooth_region(self, masks, sigma=128):
if not isinstance(sigma, list):
sigma = [sigma]
regions = []
for i, mask in enumerate(masks):
pil_image = mask2pil(mask.unsqueeze(0))
region_mask = MaskFilters.smooth_region(pil_image, sigma[i if i < len(sigma) else -1])
region_tensor = pil2mask(region_mask)
regions.append(region_tensor)
regions_tensor = torch.cat(regions, dim=0)
return (regions_tensor,)