KSampler Scheduled Sequence¶
Documentation¶
- Class name:
SaltKSamplerSequence
- Category:
SALT/AudioViz/Scheduling/Sampling
- Output node:
False
The SaltKSamplerSequence node is designed for advanced audio visualization and manipulation tasks, leveraging a sequence-based approach to sample, modify, and enhance audio data. It integrates complex scheduling, noise injection, and latent space interpolation techniques to produce high-quality audio outputs tailored to specific conditions or creative objectives.
Input types¶
Required¶
model
- Specifies the model used for audio sampling, serving as the core engine driving the node's functionality.
- Comfy dtype:
MODEL
- Python dtype:
str
seed_sequence
- A sequence of seeds used to initialize the random number generator at different stages of the sampling process, ensuring variability and control over the output.
- Comfy dtype:
LIST
- Python dtype:
List[int]
steps
- Defines the number of steps to perform in the sampling process, affecting the granularity and quality of the audio output.
- Comfy dtype:
INT
- Python dtype:
int
cfg
- Controls the conditioning factor, influencing the strength of the conditioning on the generated audio.
- Comfy dtype:
FLOAT
- Python dtype:
float
sampler_name
- Determines the specific sampling algorithm to use, impacting the texture and characteristics of the audio output.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
scheduler
- Selects the scheduling algorithm for controlling the sampling process, affecting the evolution of the audio over time.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
denoise_start
- Specifies the starting point of denoise strength, setting the initial condition for noise reduction in the audio.
- Comfy dtype:
FLOAT
- Python dtype:
float
denoise_sequence
- A sequence of denoise values to apply at different stages of the sampling process, allowing for dynamic control over noise reduction.
- Comfy dtype:
LIST
- Python dtype:
List[float]
positive_sequence
- A sequence of positive conditioning factors to enhance certain aspects of the audio throughout the sampling process.
- Comfy dtype:
CONDITIONING
- Python dtype:
List[str]
negative_sequence
- A sequence of negative conditioning factors to suppress certain aspects of the audio throughout the sampling process.
- Comfy dtype:
CONDITIONING
- Python dtype:
List[str]
use_latent_interpolation
- Indicates whether latent space interpolation is used, enabling transitions between different audio states.
- Comfy dtype:
BOOLEAN
- Python dtype:
bool
latent_interpolation_mode
- Specifies the mode of latent space interpolation, affecting how transitions between audio states are handled.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
List[str]
latent_interp_strength_sequence
- A sequence of strengths for latent space interpolation, controlling the intensity of transitions between audio states.
- Comfy dtype:
LIST
- Python dtype:
List[float]
unsample_latents
- Determines whether to perform unsampling on the latents, potentially enhancing the quality of the audio output.
- Comfy dtype:
BOOLEAN
- Python dtype:
bool
inject_noise
- Indicates whether noise is injected into the sampling process, adding texture and variability to the audio.
- Comfy dtype:
BOOLEAN
- Python dtype:
bool
noise_strength_sequence
- A sequence of noise strengths to apply at different stages of the sampling process, allowing for dynamic control over the texture of the audio.
- Comfy dtype:
LIST
- Python dtype:
List[float]
latent_image
- The latent image to be used or modified during the sampling process, serving as a basis for audio manipulation.
- Comfy dtype:
LATENT
- Python dtype:
torch.Tensor
Output types¶
latent
- Comfy dtype:
LATENT
- The final latent output, which is the result of the complex sampling and manipulation process, tailored to the specified conditions and creative objectives.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class SaltKSamplerSequence:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"model": ("MODEL",),
"seed_sequence": ("LIST", ),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step": 0.5, "round": 0.01}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
"denoise_start": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"denoise_sequence": ("LIST", ),
"positive_sequence": ("CONDITIONING",),
"negative_sequence": ("CONDITIONING",),
"use_latent_interpolation": ("BOOLEAN", {"default": False}),
"latent_interpolation_mode": (["Blend", "Slerp", "Cosine Interp"],),
"latent_interp_strength_sequence": ("LIST", ),
"unsample_latents": ("BOOLEAN", {"default": True}),
"inject_noise": ("BOOLEAN", {"default": True}),
"noise_strength_sequence": ("LIST", ),
"latent_image": ("LATENT", ),
}
}
RETURN_TYPES = ("LATENT",)
FUNCTION = "sample"
CATEGORY = f"{MENU_NAME}/{SUB_MENU_NAME}/Scheduling/Sampling"
def inject_noise(self, latent_image, noise_strength):
noise = torch.randn_like(latent_image) * noise_strength
return latent_image + noise
def expand_sequence(self, sequence, target_length):
if len(sequence) >= target_length:
return sequence
repeated_sequence = (sequence * (target_length // len(sequence) + 1))[:target_length]
return repeated_sequence
def sample(self, model, seed_sequence, steps, cfg, sampler_name, scheduler, positive_sequence, negative_sequence, latent_image,
use_latent_interpolation, latent_interpolation_mode, latent_interp_strength_sequence, unsample_latents, denoise_start,
denoise_sequence, inject_noise, noise_strength_sequence):
if not isinstance(positive_sequence, list):
positive_sequence = [positive_sequence]
if not isinstance(negative_sequence, list):
negative_sequence = [negative_sequence]
sequence_loop_count = len(positive_sequence)
if len(negative_sequence) < len(positive_sequence):
raise ValueError(f"`negative_sequence` of size {len(negative_sequence)} does not match `positive_sequence` of size {len(positive_sequence)}. Conditioning sizes must be the same.")
# Schedule Value Lists
seed_sequence = [int(seed) for seed in seed_sequence]
denoise_sequence = [float(denoise_val) for denoise_val in denoise_sequence]
latent_interp_strength_sequence = [float(latent_strength) for latent_strength in latent_interp_strength_sequence]
noise_strength_sequence = [float(noise_strength) for noise_strength in noise_strength_sequence]
# Expanding all sequences if necessary
if len(denoise_sequence) < sequence_loop_count:
denoise_sequence = self.expand_sequence(denoise_sequence, sequence_loop_count)
if len(latent_interp_strength_sequence) < sequence_loop_count:
latent_interp_strength_sequence = self.expand_sequence(latent_interp_strength_sequence, sequence_loop_count)
if len(noise_strength_sequence) < sequence_loop_count:
noise_strength_sequence = self.expand_sequence(noise_strength_sequence, sequence_loop_count)
if len(seed_sequence) < sequence_loop_count:
seed_sequence = self.expand_sequence(seed_sequence, sequence_loop_count)
results = []
sequence_loop_count = len(positive_sequence)
logger.info(f"Starting loop sequence with {sequence_loop_count} frames.")
positive_conditioning = None
negative_conditioning = None
latent_mask = latent_image.get("noise_mask", None)
for loop_count in range(sequence_loop_count):
positive_conditioning = [positive_sequence[loop_count]]
negative_conditioning = [negative_sequence[loop_count]]
if results and len(results) > 0:
if len(latent_input) == 1 or latent_mask == None:
latent_input = {'samples': results[-1]}
else:
latent_input = {'samples': latent_image["samples"][loop_count if loop_count < len(latent_image) else -1].unsqueeze(0)}
if isinstance(latent_mask, torch.Tensor):
latent_input["noise_mask"] = latent_mask
start_at_step = round((1 - denoise) * steps)
end_at_step = steps
else:
latent_copy = latent_image.copy()
if isinstance(latent_mask, torch.Tensor):
latent_copy["samples"] = latent_copy["samples"][0].unsqueeze(0)
latent_input = latent_copy
denoise = denoise_sequence[loop_count] if loop_count > 0 else denoise_start
if inject_noise and loop_count > 0:
logger.info(f"Injecting noise at {noise_strength_sequence[loop_count]} strength.")
latent_input['samples'] = self.inject_noise(latent_input['samples'], noise_strength_sequence[loop_count])
if unsample_latents and loop_count > 0:
force_full_denoise = not (loop_count > 0 or loop_count <= steps - 1)
disable_noise = False
logger.info("Unsampling latent image.")
unsampled_latent = unsample(model=model, seed=seed_sequence[loop_count], cfg=cfg, sampler_name=sampler_name, steps=steps+1, end_at_step=steps, scheduler=scheduler, normalize=False, positive=positive_conditioning, negative=negative_conditioning, latent_image=latent_input)[0]
if inject_noise and loop_count > 0:
logger.info(f"Injecting noise at {noise_strength_sequence[loop_count]} strength.")
unsampled_latent['samples'] = self.inject_noise(unsampled_latent['samples'], noise_strength_sequence[loop_count])
logger.info(f"Sampling Denoise: {denoise}")
logger.info("Sampling.")
sample = nodes.common_ksampler(model, seed_sequence[loop_count], steps, cfg, sampler_name, scheduler, positive_conditioning, negative_conditioning, unsampled_latent, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)[0]['samples']
else:
if inject_noise and loop_count > 0:
logger.info(f"Injecting noise at {noise_strength_sequence[loop_count]} strength.")
latent_input['samples'] = self.inject_noise(latent_input['samples'], noise_strength_sequence[loop_count])
sample = nodes.common_ksampler(model, seed_sequence[loop_count], steps, cfg, sampler_name, scheduler, positive_conditioning, negative_conditioning, latent_input, denoise=denoise)[0]['samples']
if use_latent_interpolation and results and loop_count > 0:
if latent_interpolation_mode == "Blend":
sample = blend_latents(latent_interp_strength_sequence[loop_count], results[-1], sample)
elif latent_interpolation_mode == "Slerp":
sample = slerp_latents(latent_interp_strength_sequence[loop_count], results[-1], sample)
elif latent_interpolation_mode == "Cosine Interp":
sample = cosine_interp_latents(latent_interp_strength_sequence[loop_count], results[-1], sample)
results.append(sample)
results = torch.cat(results, dim=0)
results = {'samples': results}
if isinstance(latent_mask, torch.Tensor):
results["noise_mask"] = latent_mask.repeat(len(results["samples"]), 1, 1, 1)
return (results,)