Controlnet Models Selector v2¶
Documentation¶
- Class name:
SeargeControlnetModels
- Category:
Searge/UI/Inputs
- Output node:
False
The SeargeControlnetModels node is designed to facilitate the selection and application of various controlnet models within a generative AI pipeline. It abstracts the complexity of choosing and integrating different controlnet models, which are essential for modifying or enhancing generated content based on specific control parameters or conditions.
Input types¶
Required¶
clip_vision
- Specifies the CLIP vision model to be used, potentially including a 'none' option to indicate no specific CLIP vision model is required. This input is crucial for determining the visual understanding context for the controlnet model.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
canny_checkpoint
- Refers to the specific checkpoint for the Canny edge detection model within the controlnet framework, including a 'none' option. It's used to apply edge detection features to the generated content.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
depth_checkpoint
- Indicates the checkpoint for the depth estimation model, allowing for depth-aware modifications to the generated content. This parameter includes a 'none' option to skip depth processing.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
recolor_checkpoint
- Specifies the checkpoint for the recoloring model, enabling color adjustments or transformations in the generated content. Includes a 'none' option for cases where recoloring is not required.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
sketch_checkpoint
- Denotes the checkpoint for the sketch model, used to apply sketch-like effects or transformations to the generated content. A 'none' option is included for flexibility.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
custom_checkpoint
- Allows for the specification of a custom controlnet model checkpoint, providing additional flexibility in content modification. Includes a 'none' option.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
Optional¶
data
- Optional stream of data that can be used for additional processing or as part of the controlnet model's input. This parameter provides flexibility in handling complex workflows.
- Comfy dtype:
SRG_DATA_STREAM
- Python dtype:
str
Output types¶
data
- Comfy dtype:
SRG_DATA_STREAM
- The output data stream resulting from the application of the controlnet models, encapsulating all modifications and enhancements made to the generated content.
- Python dtype:
str
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class SeargeControlnetModels:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"clip_vision": (UI.CLIP_VISION_WITH_NONE(),),
"canny_checkpoint": (UI.CONTROLNETS_WITH_NONE(),),
"depth_checkpoint": (UI.CONTROLNETS_WITH_NONE(),),
"recolor_checkpoint": (UI.CONTROLNETS_WITH_NONE(),),
"sketch_checkpoint": (UI.CONTROLNETS_WITH_NONE(),),
"custom_checkpoint": (UI.CONTROLNETS_WITH_NONE(),),
},
"optional": {
"data": ("SRG_DATA_STREAM",),
},
}
RETURN_TYPES = ("SRG_DATA_STREAM",)
RETURN_NAMES = ("data",)
FUNCTION = "get"
CATEGORY = UI.CATEGORY_UI_INPUTS
@staticmethod
def create_dict(clip_vision, canny_checkpoint, depth_checkpoint, recolor_checkpoint, sketch_checkpoint,
custom_checkpoint):
return {
UI.F_CLIP_VISION_CHECKPOINT: clip_vision,
UI.F_CANNY_CHECKPOINT: canny_checkpoint,
UI.F_DEPTH_CHECKPOINT: depth_checkpoint,
UI.F_RECOLOR_CHECKPOINT: recolor_checkpoint,
UI.F_SKETCH_CHECKPOINT: sketch_checkpoint,
UI.F_CUSTOM_CHECKPOINT: custom_checkpoint,
}
def get(self, clip_vision, canny_checkpoint, depth_checkpoint, recolor_checkpoint, sketch_checkpoint,
custom_checkpoint, data=None):
if data is None:
data = {}
data[UI.S_CONTROLNET_MODELS] = self.create_dict(
clip_vision,
canny_checkpoint,
depth_checkpoint,
recolor_checkpoint,
sketch_checkpoint,
custom_checkpoint,
)
return (data,)