Advanced Parameters¶
Documentation¶
- Class name:
SeargeInput3
- Category:
Searge/_deprecated_/UI/Inputs
- Output node:
False
SeargeInput3 is designed to process and integrate various input types for generating or modifying content, focusing on combining different forms of prompts and styles to tailor the output according to specific requirements or preferences.
Input types¶
Required¶
base_ratio
- Specifies the base ratio for high-resolution image processing, influencing the balance between base and refined details in the output.
- Comfy dtype:
FLOAT
- Python dtype:
float
refiner_strength
- Determines the strength of the refinement process, affecting the intensity of details and textures in the final image.
- Comfy dtype:
FLOAT
- Python dtype:
float
refiner_intensity
- Controls the intensity of the refiner's effect, allowing for finer adjustments to how much the refiner alters the image.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
float
precondition_steps
- Defines the number of steps to precondition the image, preparing it for further processing or refinement.
- Comfy dtype:
INT
- Python dtype:
int
batch_size
- Sets the batch size for processing, impacting performance and the amount of data processed simultaneously.
- Comfy dtype:
INT
- Python dtype:
int
upscale_resolution_factor
- Adjusts the factor by which the image resolution is increased, directly influencing the output image's clarity and detail.
- Comfy dtype:
FLOAT
- Python dtype:
float
save_upscaled_image
- Determines whether the upscaled image is saved, providing control over the output management.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
Optional¶
inputs
- Optional inputs for additional parameters or configurations, offering flexibility in the processing workflow.
- Comfy dtype:
PARAMETER_INPUTS
- Python dtype:
str
denoise
- Applies a denoising filter to the image, reducing noise and potentially improving visual quality.
- Comfy dtype:
FLOAT
- Python dtype:
float
Output types¶
inputs
- Comfy dtype:
PARAMETER_INPUTS
- The processed inputs, potentially including modified or additional parameters for further stages of content generation or modification.
- Python dtype:
dict
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class SeargeInput3:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"base_ratio": ("FLOAT", {"default": 0.8, "min": 0.0, "max": 1.0, "step": 0.01}),
"refiner_strength": ("FLOAT", {"default": 1.0, "min": 0.1, "max": 1.0, "step": 0.05}),
"refiner_intensity": (SeargeParameterProcessor.REFINER_INTENSITY,
{"default": SeargeParameterProcessor.REFINER_INTENSITY[1]}),
"precondition_steps": ("INT", {"default": 0, "min": 0, "max": 10}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4}),
"upscale_resolution_factor": ("FLOAT", {"default": 2.0, "min": 0.25, "max": 4.0, "step": 0.25}),
"save_upscaled_image": (SeargeParameterProcessor.STATES, {"default": SeargeParameterProcessor.STATES[1]}),
},
"optional": {
"inputs": ("PARAMETER_INPUTS",),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
},
}
RETURN_TYPES = ("PARAMETER_INPUTS",)
RETURN_NAMES = ("inputs",)
FUNCTION = "mux"
CATEGORY = "Searge/_deprecated_/UI/Inputs"
def mux(self, base_ratio, refiner_strength, refiner_intensity, precondition_steps, batch_size,
upscale_resolution_factor, save_upscaled_image, inputs=None, denoise=None):
if inputs is None:
parameters = {}
else:
parameters = inputs
parameters["denoise"] = denoise
parameters["base_ratio"] = base_ratio
parameters["refiner_strength"] = refiner_strength
parameters["refiner_intensity"] = refiner_intensity
parameters["precondition_steps"] = precondition_steps
parameters["batch_size"] = batch_size
parameters["upscale_resolution_factor"] = upscale_resolution_factor
parameters["save_upscaled_image"] = save_upscaled_image
return (parameters,)