Upscale Models Selector v2¶
Documentation¶
- Class name:
SeargeUpscaleModels
- Category:
Searge/UI/Inputs
- Output node:
False
This node is designed to configure and manage upscale models within a UI context, specifically for enhancing image resolution through various upscaling techniques. It allows for the selection and application of different upscaling models, including detail processing and high-resolution upscaling, to improve image quality.
Input types¶
Required¶
detail_processor
- Specifies the model used for detail enhancement in images, playing a crucial role in refining image textures and details without altering the overall resolution.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
high_res_upscaler
- Defines the model responsible for increasing the image resolution by a factor of 4x, essential for achieving high-resolution outputs.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
primary_upscaler
- Identifies the primary model used for the initial phase of image upscaling, crucial for the first step in enhancing image resolution.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
secondary_upscaler
- Specifies the secondary model applied after the primary upscaling, offering an additional layer of refinement and quality improvement.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
Optional¶
data
- Optional data stream for passing additional information or parameters relevant to the upscaling process.
- Comfy dtype:
SRG_DATA_STREAM
- Python dtype:
dict
Output types¶
data
- Comfy dtype:
SRG_DATA_STREAM
- Returns a data stream containing the configured upscale models and any additional parameters, ready for further processing or application.
- Python dtype:
dict
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class SeargeUpscaleModels:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"detail_processor": (UI.UPSCALERS_1x_WITH_NONE(),),
"high_res_upscaler": (UI.UPSCALERS_4x_WITH_NONE(),),
"primary_upscaler": (UI.UPSCALERS_4x_WITH_NONE(),),
"secondary_upscaler": (UI.UPSCALERS_4x_WITH_NONE(),),
},
"optional": {
"data": ("SRG_DATA_STREAM",),
},
}
RETURN_TYPES = ("SRG_DATA_STREAM",)
RETURN_NAMES = ("data",)
FUNCTION = "get"
CATEGORY = UI.CATEGORY_UI_INPUTS
@staticmethod
def create_dict(detail_processor, high_res_upscaler, primary_upscaler, secondary_upscaler):
return {
UI.F_DETAIL_PROCESSOR: detail_processor,
UI.F_HIGH_RES_UPSCALER: high_res_upscaler,
UI.F_PRIMARY_UPSCALER: primary_upscaler,
UI.F_SECONDARY_UPSCALER: secondary_upscaler,
}
def get(self, detail_processor, high_res_upscaler, primary_upscaler, secondary_upscaler, data=None):
if data is None:
data = {}
data[UI.S_UPSCALE_MODELS] = self.create_dict(
detail_processor,
high_res_upscaler,
primary_upscaler,
secondary_upscaler,
)
return (data,)