A Person Mask Generator¶
Documentation¶
- Class name:
APersonMaskGenerator
- Category:
A Person Mask Generator - David Bielejeski
- Output node:
False
This node is designed to generate masks for persons in images, leveraging advanced segmentation techniques to isolate specific parts of a person, such as hair, body, face, and clothes. It utilizes image segmentation models to create detailed masks that can be used for various applications like image editing or augmentation.
Input types¶
Required¶
images
- The input images for which the masks need to be generated. They are essential for the segmentation process, as the quality and characteristics of the images directly influence the accuracy and detail of the generated masks.
- Comfy dtype:
IMAGE
- Python dtype:
numpy.ndarray
Optional¶
face_mask
- Indicates whether a mask for the face should be generated, allowing for targeted segmentation of the face area.
- Comfy dtype:
BOOLEAN
- Python dtype:
bool
background_mask
- Indicates whether a mask for the background should be generated, enabling isolation or removal of the background from the image.
- Comfy dtype:
BOOLEAN
- Python dtype:
bool
hair_mask
- Specifies whether a mask for the hair should be generated, facilitating targeted editing or enhancement of the hair in the image.
- Comfy dtype:
BOOLEAN
- Python dtype:
bool
body_mask
- Determines whether a mask for the body should be generated, allowing for precise segmentation of the body area for various editing purposes.
- Comfy dtype:
BOOLEAN
- Python dtype:
bool
clothes_mask
- Indicates whether a mask for the clothes should be generated, enabling detailed editing or alteration of clothing in the image.
- Comfy dtype:
BOOLEAN
- Python dtype:
bool
confidence
- The confidence threshold for mask generation, affecting the precision and accuracy of the segmentation process.
- Comfy dtype:
FLOAT
- Python dtype:
float
Output types¶
masks
- Comfy dtype:
MASK
- The generated masks highlighting the specified parts of the person. These masks can be used for various purposes, including image editing and augmentation.
- Python dtype:
PIL.Image
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class APersonMaskGenerator:
def __init__(self):
# download the model if we need it
get_a_person_mask_generator_model_path()
@classmethod
def INPUT_TYPES(self):
false_widget = ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"})
true_widget = ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"})
return {
"required":
{
"images": ("IMAGE",),
},
"optional":
{
"face_mask": true_widget,
"background_mask": false_widget,
"hair_mask": false_widget,
"body_mask": false_widget,
"clothes_mask": false_widget,
"confidence": ("FLOAT", {"default": 0.40, "min": 0.01, "max": 1.0, "step": 0.01},),
}
}
CATEGORY = "A Person Mask Generator - David Bielejeski"
RETURN_TYPES = ("MASK",)
RETURN_NAMES = ("masks",)
FUNCTION = "generate_mask"
def get_mediapipe_image(self, image: Image) -> mp.Image:
# Convert image to NumPy array
numpy_image = np.asarray(image)
image_format = mp.ImageFormat.SRGB
# Convert BGR to RGB (if necessary)
if numpy_image.shape[-1] == 4:
image_format = mp.ImageFormat.SRGBA
elif numpy_image.shape[-1] == 3:
image_format = mp.ImageFormat.SRGB
numpy_image = cv2.cvtColor(numpy_image, cv2.COLOR_BGR2RGB)
return mp.Image(image_format=image_format, data=numpy_image)
def generate_mask(self, images, face_mask: bool, background_mask: bool, hair_mask: bool, body_mask: bool, clothes_mask: bool, confidence: float):
"""Create a segmentation mask from an image
Args:
image (torch.Tensor): The image to create the mask for.
face_mask (bool): create a mask for the background.
background_mask (bool): create a mask for the hair.
hair_mask (bool): create a mask for the body .
body_mask (bool): create a mask for the face.
clothes_mask (bool): create a mask for the clothes.
Returns:
torch.Tensor: The segmentation masks.
"""
a_person_mask_generator_model_path = get_a_person_mask_generator_model_path()
a_person_mask_generator_model_buffer = None
with open(a_person_mask_generator_model_path, "rb") as f:
a_person_mask_generator_model_buffer = f.read()
image_segmenter_base_options = mp.tasks.BaseOptions(model_asset_buffer=a_person_mask_generator_model_buffer)
options = mp.tasks.vision.ImageSegmenterOptions(
base_options=image_segmenter_base_options,
running_mode=mp.tasks.vision.RunningMode.IMAGE,
output_category_mask=True)
# Create the image segmenter
res_masks = []
with mp.tasks.vision.ImageSegmenter.create_from_options(options) as segmenter:
for image in images:
# Convert the Tensor to a PIL image
i = 255. * image.cpu().numpy()
image_pil = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
# create our foreground and background arrays for storing the mask results
mask_background_array = np.zeros((image_pil.size[0], image_pil.size[1], 4), dtype=np.uint8)
mask_background_array[:] = (0, 0, 0, 255)
mask_foreground_array = np.zeros((image_pil.size[0], image_pil.size[1], 4), dtype=np.uint8)
mask_foreground_array[:] = (255, 255, 255, 255)
# Retrieve the masks for the segmented image
media_pipe_image = self.get_mediapipe_image(image=image_pil)
segmented_masks = segmenter.segment(media_pipe_image)
# https://developers.google.com/mediapipe/solutions/vision/image_segmenter#multiclass-model
# 0 - background
# 1 - hair
# 2 - body - skin
# 3 - face - skin
# 4 - clothes
# 5 - others(accessories)
masks = []
if background_mask:
masks.append(segmented_masks.confidence_masks[0])
if hair_mask:
masks.append(segmented_masks.confidence_masks[1])
if body_mask:
masks.append(segmented_masks.confidence_masks[2])
if face_mask:
masks.append(segmented_masks.confidence_masks[3])
if clothes_mask:
masks.append(segmented_masks.confidence_masks[4])
image_data = media_pipe_image.numpy_view()
image_shape = image_data.shape
# convert the image shape from "rgb" to "rgba" aka add the alpha channel
if image_shape[-1] == 3:
image_shape = (image_shape[0], image_shape[1], 4)
mask_background_array = np.zeros(image_shape, dtype=np.uint8)
mask_background_array[:] = (0, 0, 0, 255)
mask_foreground_array = np.zeros(image_shape, dtype=np.uint8)
mask_foreground_array[:] = (255, 255, 255, 255)
mask_arrays = []
if len(masks) == 0:
mask_arrays.append(mask_background_array)
else:
for i, mask in enumerate(masks):
condition = np.stack((mask.numpy_view(),) * image_shape[-1], axis=-1) > confidence
mask_array = np.where(condition, mask_foreground_array, mask_background_array)
mask_arrays.append(mask_array)
# Merge our masks taking the maximum from each
merged_mask_arrays = reduce(np.maximum, mask_arrays)
# Create the image
mask_image = Image.fromarray(merged_mask_arrays)
# convert PIL image to tensor image
tensor_mask = mask_image.convert("RGB")
tensor_mask = np.array(tensor_mask).astype(np.float32) / 255.0
tensor_mask = torch.from_numpy(tensor_mask)[None,]
tensor_mask = tensor_mask.squeeze(3)[..., 0]
res_masks.append(tensor_mask)
return (torch.cat(res_masks, dim=0),)