Checkpoint Models to Pipe¶
Documentation¶
- Class name:
AV_CheckpointModelsToParametersPipe
- Category:
Art Venture/Parameters
- Output node:
False
This node is designed to convert model checkpoint names and various model component names into a structured pipeline configuration. It facilitates the organization and management of model components such as VAEs, upscalers, and LoRA layers by mapping their names to a pipeline dictionary, streamlining the process of configuring and utilizing these components in AI art generation workflows.
Input types¶
Required¶
ckpt_name
- The name of the primary model checkpoint. It is crucial for identifying the main model to be used in the pipeline.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
Optional¶
pipe
- A dictionary that may already contain some pipeline configuration, which this node will update or expand based on the provided model component names.
- Comfy dtype:
PIPE
- Python dtype:
Dict
secondary_ckpt_name
- The name of the secondary model checkpoint, allowing for the integration of additional models into the pipeline.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
vae_name
- Specifies the name of the VAE (Variational Autoencoder) model to be included in the pipeline, enhancing the model's capabilities.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
upscaler_name
- The name of the upscaling model to be used for enhancing image resolution within the pipeline.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
secondary_upscaler_name
- The name of an additional upscaling model, offering flexibility in choosing resolution enhancement methods.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
lora_i_name
- The name of a LoRA (Low-Rank Adaptation) layer, enabling fine-tuning of the model's behavior. The index 'i' can range from 1 to 3, allowing for the specification of up to three different LoRA layers.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
Output types¶
pipe
- Comfy dtype:
PIPE
- A dictionary mapping model component names to their respective identifiers, organizing the pipeline configuration for easy access and modification.
- Python dtype:
Dict
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class AVCheckpointModelsToParametersPipe:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"ckpt_name": (folder_paths.get_filename_list("checkpoints"),),
},
"optional": {
"pipe": ("PIPE",),
"secondary_ckpt_name": (["None"] + folder_paths.get_filename_list("checkpoints"),),
"vae_name": (["None"] + folder_paths.get_filename_list("vae"),),
"upscaler_name": (["None"] + folder_paths.get_filename_list("upscale_models"),),
"secondary_upscaler_name": (["None"] + folder_paths.get_filename_list("upscale_models"),),
"lora_1_name": (["None"] + folder_paths.get_filename_list("loras"),),
"lora_2_name": (["None"] + folder_paths.get_filename_list("loras"),),
"lora_3_name": (["None"] + folder_paths.get_filename_list("loras"),),
},
}
RETURN_TYPES = ("PIPE",)
CATEGORY = "Art Venture/Parameters"
FUNCTION = "checkpoint_models_to_parameter_pipe"
def checkpoint_models_to_parameter_pipe(
self,
ckpt_name,
pipe: Dict = {},
secondary_ckpt_name="None",
vae_name="None",
upscaler_name="None",
secondary_upscaler_name="None",
lora_1_name="None",
lora_2_name="None",
lora_3_name="None",
):
pipe["ckpt_name"] = ckpt_name if ckpt_name != "None" else None
pipe["secondary_ckpt_name"] = secondary_ckpt_name if secondary_ckpt_name != "None" else None
pipe["vae_name"] = vae_name if vae_name != "None" else None
pipe["upscaler_name"] = upscaler_name if upscaler_name != "None" else None
pipe["secondary_upscaler_name"] = secondary_upscaler_name if secondary_upscaler_name != "None" else None
pipe["lora_1_name"] = lora_1_name if lora_1_name != "None" else None
pipe["lora_2_name"] = lora_2_name if lora_2_name != "None" else None
pipe["lora_3_name"] = lora_3_name if lora_3_name != "None" else None
return (pipe,)