Skip to content

KSampler Efficient Fooocus

Documentation

  • Class name: Fooocus_KSamplerEfficient
  • Category: Art Venture/Sampling
  • Output node: True

The Fooocus_KSamplerEfficient node enhances the sampling process in art generation by incorporating a sharpness parameter, allowing for more precise control over the texture and detail level of generated images. This node builds upon the foundational sampling capabilities to offer an advanced, efficiency-focused approach to art creation.

Input types

Required

  • model
    • Specifies the model used for the sampling process, integral to determining the art generation's foundational style and characteristics.
    • Comfy dtype: MODEL
    • Python dtype: str
  • seed
    • The seed parameter ensures reproducibility in the art generation process by initializing the random number generator to a specific state.
    • Comfy dtype: INT
    • Python dtype: int
  • steps
    • Defines the number of steps in the sampling process, affecting the detail and quality of the generated art.
    • Comfy dtype: INT
    • Python dtype: int
  • cfg
    • Configures the conditioning factor for the sampling process, influencing the generation's creativity and coherence.
    • Comfy dtype: FLOAT
    • Python dtype: float
  • sampler_name
    • Identifies the specific sampler algorithm to be used, affecting the texture and detail of the generated art.
    • Comfy dtype: COMBO[STRING]
    • Python dtype: str
  • scheduler
    • Specifies the scheduler for controlling the sampling process, impacting the progression and quality of art generation.
    • Comfy dtype: COMBO[STRING]
    • Python dtype: str
  • positive
    • Defines positive conditioning to guide the art generation towards desired attributes.
    • Comfy dtype: CONDITIONING
    • Python dtype: str
  • negative
    • Sets negative conditioning to avoid certain attributes in the generated art.
    • Comfy dtype: CONDITIONING
    • Python dtype: str
  • latent_image
    • Provides the initial latent image to be transformed by the sampling process.
    • Comfy dtype: LATENT
    • Python dtype: object
  • denoise
    • Adjusts the level of denoising applied to the generated art, affecting clarity and detail.
    • Comfy dtype: FLOAT
    • Python dtype: float
  • preview_method
    • unknown
    • Comfy dtype: COMBO[STRING]
    • Python dtype: unknown
  • vae_decode
    • unknown
    • Comfy dtype: COMBO[STRING]
    • Python dtype: unknown

Optional

  • optional_vae
    • unknown
    • Comfy dtype: VAE
    • Python dtype: unknown
  • script
    • unknown
    • Comfy dtype: SCRIPT
    • Python dtype: unknown
  • sharpness
    • The sharpness parameter allows users to adjust the level of detail and texture in the generated art, providing a means to fine-tune the visual output for more precise artistic control.
    • Comfy dtype: FLOAT
    • Python dtype: float

Output types

  • MODEL
    • Comfy dtype: MODEL
    • unknown
    • Python dtype: unknown
  • CONDITIONING+
    • Comfy dtype: CONDITIONING
    • unknown
    • Python dtype: unknown
  • CONDITIONING-
    • Comfy dtype: CONDITIONING
    • unknown
    • Python dtype: unknown
  • LATENT
    • Comfy dtype: LATENT
    • The output latent image represents the final generated art, encapsulating the visual characteristics specified through the input parameters.
    • Python dtype: object
  • VAE
    • Comfy dtype: VAE
    • unknown
    • Python dtype: unknown
  • IMAGE
    • Comfy dtype: IMAGE
    • unknown
    • Python dtype: unknown

Usage tips

  • Infra type: CPU
  • Common nodes: unknown

Source code

    class KSamplerEfficientWithSharpness(TSC_KSampler):
        @classmethod
        def INPUT_TYPES(cls):
            inputs = TSC_KSampler.INPUT_TYPES()
            inputs["optional"]["sharpness"] = (
                "FLOAT",
                {"default": 2.0, "min": 0.0, "max": 100.0, "step": 0.01},
            )

            return inputs

        CATEGORY = "Art Venture/Sampling"

        def sample(self, *args, sharpness=2.0, **kwargs):
            patch.sharpness = sharpness
            patch.patch_all()
            results = super().sample(*args, **kwargs)
            patch.unpatch_all()
            return results