Image Gaussian Blur¶
Documentation¶
- Class name:
ImageGaussianBlur
- Category:
Art Venture/Utils
- Output node:
False
The ImageGaussianBlur
node applies a Gaussian blur filter to a collection of images, effectively smoothing them by a specified radius. This operation is commonly used in image processing to reduce noise and detail, or to create a visual effect.
Input types¶
Required¶
images
- The collection of images to be blurred. This input is crucial for defining the set of images that will undergo the Gaussian blur transformation.
- Comfy dtype:
IMAGE
- Python dtype:
List[torch.Tensor]
radius
- Specifies the radius of the Gaussian blur. A larger radius results in a more pronounced blurring effect.
- Comfy dtype:
INT
- Python dtype:
int
Output types¶
image
- Comfy dtype:
IMAGE
- The blurred images, returned as a single tensor by concatenating the individually blurred images along the batch dimension.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class UtilImageGaussianBlur:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE",),
"radius": ("INT", {"default": 1, "min": 1, "max": 100}),
}
}
RETURN_TYPES = ("IMAGE",)
CATEGORY = "Art Venture/Utils"
FUNCTION = "image_gaussian_blur"
def image_gaussian_blur(self, images, radius):
blured_images = []
for image in images:
img = tensor2pil(image)
img = img.filter(ImageFilter.GaussianBlur(radius=radius))
blured_images.append(pil2tensor(img))
return (torch.cat(blured_images, dim=0),)