Image Levels¶
Documentation¶
- Class name:
JWImageLevels
- Category:
jamesWalker55
- Output node:
False
The JWImageLevels node adjusts the intensity levels of an image within a specified range, enhancing the visual contrast or correcting the exposure. It linearly rescales the image's colors between given minimum and maximum values, clipping any out-of-range values.
Input types¶
Required¶
image
- The input image tensor to be adjusted. This tensor undergoes a linear transformation based on the specified minimum and maximum values, affecting its overall brightness and contrast.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
min
- The lower bound of the intensity range. Pixels with intensities below this value will be set to the minimum (black), effectively darkening the image.
- Comfy dtype:
FLOAT
- Python dtype:
float
max
- The upper bound of the intensity range. Pixels with intensities above this value will be set to the maximum (white), effectively brightening the image.
- Comfy dtype:
FLOAT
- Python dtype:
float
Output types¶
image
- Comfy dtype:
IMAGE
- The output image tensor with adjusted intensity levels, where the pixel values are rescaled to fit within the new specified range.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
@register_node("JWImageMix", "Image Mix")
class _:
CATEGORY = "jamesWalker55"
BLEND_TYPES = ("mix", "multiply")
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"blend_type": (cls.BLEND_TYPES, {"default": "mix"}),
"factor": ("FLOAT", {"min": 0, "max": 1, "step": 0.01, "default": 0.5}),
"image_a": ("IMAGE",),
"image_b": ("IMAGE",),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
def execute(
self,
blend_type: str,
factor: float,
image_a: torch.Tensor,
image_b: torch.Tensor,
):
assert blend_type in self.BLEND_TYPES
assert isinstance(factor, float)
assert isinstance(image_a, torch.Tensor)
assert isinstance(image_b, torch.Tensor)
assert image_a.shape == image_b.shape
if blend_type == "mix":
mixed = image_a * (1 - factor) + image_b * factor
elif blend_type == "multiply":
mixed = image_a * (1 - factor + image_b * factor)
else:
raise NotImplementedError(f"Blend type not yet implemented: {blend_type}")
return (mixed,)