Image Resize¶
Documentation¶
- Class name:
JWImageResize
- Category:
jamesWalker55
- Output node:
False
The JWImageResize node is designed to adjust the size of an image to specified width and height dimensions, using a chosen interpolation method to maintain image quality.
Input types¶
Required¶
image
- The input image tensor to be resized. It's crucial for defining the visual content that will undergo resizing.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
height
- Specifies the target height for the resized image, directly influencing the image's vertical dimension.
- Comfy dtype:
INT
- Python dtype:
int
width
- Determines the target width for the resized image, directly affecting the image's horizontal dimension.
- Comfy dtype:
INT
- Python dtype:
int
interpolation_mode
- The method used for interpolating between pixel values when resizing, which affects the quality and appearance of the output image.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
Output types¶
image
- Comfy dtype:
IMAGE
- The resized image tensor, adjusted to the specified dimensions and interpolation quality.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes:
Source code¶
@register_node("JWImageLoadRGB", "Image Load RGB")
class _:
CATEGORY = "jamesWalker55"
INPUT_TYPES = lambda: {
"required": {
"path": ("STRING", {"default": "./image.png"}),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
def execute(self, path: str):
assert isinstance(path, str)
img = load_image(path)
return (img,)