Batch Load Image Sequence With Stop Index¶
Documentation¶
- Class name:
JWLoadImageSequenceWithStopIndex
- Category:
jamesWalker55
- Output node:
False
This node is designed to batch load a sequence of images based on a specified start and stop index, with options to include or exclude the stop index and to ignore missing images. It facilitates the dynamic loading of image sequences from a filesystem, allowing for flexible data handling in image processing workflows.
Input types¶
Required¶
path_pattern
- Specifies the pattern or path for locating the images to be loaded, using placeholders for indices.
- Comfy dtype:
STRING
- Python dtype:
str
start_index
- Defines the starting index for the sequence of images to be loaded.
- Comfy dtype:
INT
- Python dtype:
int
stop_index
- Sets the ending index for the image sequence loading, determining the range of images to include.
- Comfy dtype:
INT
- Python dtype:
int
inclusive
- Determines whether the stop index is included in the loading sequence, allowing for inclusive or exclusive range selection.
- Comfy dtype:
['false', 'true']
- Python dtype:
str
ignore_missing_images
- Controls whether to ignore missing images within the specified range, enabling robust handling of incomplete sequences.
- Comfy dtype:
['false', 'true']
- Python dtype:
str
Output types¶
image
- Comfy dtype:
IMAGE
- Returns the loaded sequence of images as a tensor, ready for further processing or analysis.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
@register_node("JWLoadImageSequence", "Batch Load Image Sequence")
class _:
CATEGORY = "jamesWalker55"
INPUT_TYPES = lambda: {
"required": {
"path_pattern": (
"STRING",
{"default": "./frame{:06d}.png", "multiline": False},
),
"start_index": ("INT", {"default": 0, "min": 0, "step": 1}),
"frame_count": ("INT", {"default": 16, "min": 1, "step": 1}),
"ignore_missing_images": (("false", "true"), {"default": "false"}),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
def execute(
self,
path_pattern: str,
start_index: int,
frame_count: int,
ignore_missing_images: str,
):
ignore_missing_images: bool = ignore_missing_images == "true"
# generate image paths to load
image_paths = []
for i in range(start_index, start_index + frame_count):
try:
image_paths.append(path_pattern.format(i))
except KeyError:
image_paths.append(path_pattern.format(i=i))
if ignore_missing_images:
# remove missing images
image_paths = [p for p in image_paths if os.path.exists(p)]
else:
# early check for missing images
for path in image_paths:
if not os.path.exists(path):
raise FileNotFoundError(f"Image does not exist: {path}")
if len(image_paths) == 0:
raise RuntimeError("Image sequence empty - no images to load")
imgs = []
for path in image_paths:
img = load_image(path)
# img.shape => torch.Size([1, 768, 768, 3])
imgs.append(img)
imgs = torch.cat(imgs, dim=0)
return (imgs,)