Skip to content

Mask Resize

Documentation

  • Class name: JWMaskResize
  • Category: jamesWalker55
  • Output node: False

The JWMaskResize node is designed for resizing masks to specified dimensions, offering various interpolation modes to best suit the resizing needs.

Input types

Required

  • mask
    • The input mask to be resized. This parameter is crucial as it determines the content that will be resized.
    • Comfy dtype: MASK
    • Python dtype: torch.Tensor
  • height
    • The desired height for the resized mask. This parameter directly influences the dimensions of the output mask.
    • Comfy dtype: INT
    • Python dtype: int
  • width
    • The desired width for the resized mask. This parameter directly influences the dimensions of the output mask.
    • Comfy dtype: INT
    • Python dtype: int
  • interpolation_mode
    • Specifies the method of interpolation to be used during resizing, allowing for flexibility in how the resizing is performed.
    • Comfy dtype: COMBO[STRING]
    • Python dtype: str

Output types

  • mask
    • Comfy dtype: MASK
    • The resized mask, adjusted to the specified dimensions and using the chosen interpolation method.
    • Python dtype: torch.Tensor

Usage tips

  • Infra type: GPU
  • Common nodes: unknown

Source code

@register_node("JWImageLoadRGB", "Image Load RGB")
class _:
    CATEGORY = "jamesWalker55"
    INPUT_TYPES = lambda: {
        "required": {
            "path": ("STRING", {"default": "./image.png"}),
        }
    }
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "execute"

    def execute(self, path: str):
        assert isinstance(path, str)

        img = load_image(path)
        return (img,)