CLIPEncodeMultiple¶
Documentation¶
- Class name:
CLIPEncodeMultiple
- Category:
Bmad/conditioning
- Output node:
False
The CLIPEncodeMultiple node is designed to encode multiple text inputs into a conditioning format using a CLIP model. It iterates over a specified number of inputs, encoding each one separately and aggregating the results into a list of conditionings. This node is useful for scenarios where multiple textual descriptions need to be encoded in parallel and then utilized for further processing or generation tasks.
Input types¶
Required¶
clip
- The CLIP model used for encoding the text inputs. It is crucial for the text encoding process, affecting the quality and relevance of the generated conditionings.
- Comfy dtype:
CLIP
- Python dtype:
torch.nn.Module
inputs_len
- Specifies the number of text inputs to encode. It determines the iteration count for the encoding process, directly influencing the output list's length.
- Comfy dtype:
INT
- Python dtype:
int
Output types¶
conditioning
- Comfy dtype:
CONDITIONING
- A list of encoded text inputs, each transformed into a conditioning format suitable for further processing or generation tasks.
- Python dtype:
List[torch.Tensor]
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class CLIPEncodeMultiple(nodes.CLIPTextEncode):
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"clip": ("CLIP",),
"inputs_len": ("INT", {"default": 9, "min": 0, "max": 32}),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "gen2"
CATEGORY = conditioning_category_path
OUTPUT_IS_LIST = (True,)
def gen2(self, clip, inputs_len, **kwargs):
conds = []
for i in range(inputs_len):
arg_name = get_arg_name_from_multiple_inputs("string", i)
conds.append(super().encode(clip, kwargs[arg_name])[0])
return (conds,)