EqualizeHistogram¶
Documentation¶
- Class name:
EqualizeHistogram
- Category:
Bmad/CV/Thresholding
- Output node:
False
The EqualizeHistogram node is designed to enhance the contrast of an image by equalizing its histogram. This process redistributes the intensity levels of the image, potentially improving its visual perception.
Input types¶
Required¶
src
- The source image to be processed for histogram equalization. This input is crucial as it directly influences the enhancement of the image's contrast.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
Output types¶
image
- Comfy dtype:
IMAGE
- The output is an enhanced image with equalized histogram, aimed at improving the contrast and visual quality.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class EqualizeHistogram:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"src": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "eq"
CATEGORY = f"{cv_category_path}/Thresholding"
def eq(self, src):
src = tensor2opencv(src, 1)
eq = cv.equalizeHist(src)
eq = cv.cvtColor(eq, cv.COLOR_GRAY2RGB)
eq = opencv2tensor(eq)
return (eq,)