LoraLoader (dirty)¶
Documentation¶
- Class name:
LoraLoader (dirty)
- Category:
Bmad/api/dirty loaders
- Output node:
False
The LoraLoader (dirty) node is designed to dynamically load LoRA (Low-Rank Adaptation) parameters into models and CLIP instances, allowing for the customization and fine-tuning of these components based on specified LoRA files and strength parameters. It serves as a bridge between static model states and adaptable, performance-enhanced versions tailored to specific tasks or datasets.
Input types¶
Required¶
model
- The model parameter represents the pre-trained model into which LoRA parameters will be loaded. It is crucial for defining the base architecture that will be enhanced with LoRA adaptations.
- Comfy dtype:
MODEL
- Python dtype:
torch.nn.Module
clip
- The clip parameter signifies the CLIP model instance that will be adjusted using LoRA parameters. It plays a key role in adapting the CLIP model for enhanced performance in specific tasks.
- Comfy dtype:
CLIP
- Python dtype:
torch.nn.Module
lora_name
- The lora_name parameter specifies the filename of the LoRA parameters to be loaded. It determines which specific LoRA adaptations will be applied to the model and CLIP instances.
- Comfy dtype:
STRING
- Python dtype:
str
strength_model
- This parameter controls the intensity of the LoRA adaptation applied to the model. It allows for fine-tuning the impact of LoRA parameters on the model's performance.
- Comfy dtype:
FLOAT
- Python dtype:
float
strength_clip
- Similar to strength_model, this parameter adjusts the intensity of the LoRA adaptation on the CLIP model, enabling precise control over its influence.
- Comfy dtype:
FLOAT
- Python dtype:
float
Output types¶
model
- Comfy dtype:
MODEL
- The modified model with LoRA parameters applied, reflecting the adaptations made for enhanced performance or customization.
- Python dtype:
torch.nn.Module
- Comfy dtype:
clip
- Comfy dtype:
CLIP
- The adjusted CLIP model with LoRA parameters incorporated, showcasing the enhancements made for improved task-specific performance.
- Python dtype:
torch.nn.Module
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class DirtyLoraLoader:
@classmethod
def INPUT_TYPES(cls):
return {"required": {"model": ("MODEL",),
"clip": ("CLIP",),
"lora_name": ("STRING", {"default": ""}),
"strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL", "CLIP")
FUNCTION = "load_lora"
CATEGORY = f"{api_category_path}/dirty loaders"
def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
lora_name = DirtyLoaderUtils.find_matching_filename(
lora_name, folder_paths.get_filename_list("loras"))
loader = nodes.LoraLoader()
return loader.load_lora(model, clip, lora_name, strength_model, strength_clip)