Repeat Into Grid (image)¶
Documentation¶
- Class name:
Repeat Into Grid (image)
- Category:
Bmad/image
- Output node:
False
This node tiles input image samples into a grid of configurable dimensions, effectively repeating the input image across a specified number of rows and columns to create a larger, grid-like composite image.
Input types¶
Required¶
image
- The input image to be tiled across the grid. It determines the visual content that will be repeated in each cell of the grid.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
columns
- Specifies the number of columns in the grid. This determines how many times the input image is repeated horizontally.
- Comfy dtype:
INT
- Python dtype:
int
rows
- Specifies the number of rows in the grid. This determines how many times the input image is repeated vertically.
- Comfy dtype:
INT
- Python dtype:
int
Output types¶
image
- Comfy dtype:
IMAGE
- The output composite image, consisting of the input image tiled according to the specified rows and columns.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class RepeatIntoGridImage:
"""
Tiles the input samples into a grid of configurable dimensions.
"""
@classmethod
def INPUT_TYPES(cls):
return {"required": {"image": ("IMAGE",),
"columns": grid_len_INPUT,
"rows": grid_len_INPUT,
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "repeat_into_grid"
CATEGORY = images_category_path
def repeat_into_grid(self, image, columns, rows):
samples = image.movedim(-1, 1)
samples = samples.repeat(1, 1, rows, columns)
samples = samples.movedim(1, -1)
return (samples,)