BAE Normal Map¶
Documentation¶
- Class name:
BAE-NormalMapPreprocessor
- Category:
ControlNet Preprocessors/Normal and Depth Estimators
- Output node:
False
The BAE-NormalMapPreprocessor node is designed for preprocessing images to generate normal maps using the BAE (Boundary Aware Encoder) model. It enhances images for further processing or visualization by estimating surface normals.
Input types¶
Required¶
image
- The input image to be processed for normal map generation.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
Optional¶
resolution
- The resolution to which the input image is resized before processing. It affects the detail level of the generated normal map.
- Comfy dtype:
INT
- Python dtype:
int
Output types¶
image
- Comfy dtype:
IMAGE
- The output normal map generated from the input image, providing an estimation of surface normals.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class BAE_Normal_Map_Preprocessor:
@classmethod
def INPUT_TYPES(s):
return create_node_input_types()
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
def execute(self, image, resolution=512, **kwargs):
from controlnet_aux.normalbae import NormalBaeDetector
model = NormalBaeDetector.from_pretrained().to(model_management.get_torch_device())
out = common_annotator_call(model, image, resolution=resolution)
del model
return (out,)