Canny Edge¶
Documentation¶
- Class name:
CannyEdgePreprocessor
- Category:
ControlNet Preprocessors/Line Extractors
- Output node:
False
The CannyEdgePreprocessor node is designed for edge detection in images using the Canny algorithm. It preprocesses images by applying a Canny edge detector to highlight the edges within the image, making it suitable for further image processing or analysis tasks.
Input types¶
Required¶
image
- The image parameter is the input image on which edge detection will be performed using the Canny algorithm.
- Comfy dtype:
IMAGE
- Python dtype:
numpy.ndarray
Optional¶
low_threshold
- The low_threshold parameter sets the lower bound for the hysteresis thresholding step in the Canny edge detection algorithm. It helps in identifying the weak edges in the image.
- Comfy dtype:
INT
- Python dtype:
int
high_threshold
- The high_threshold parameter sets the upper bound for the hysteresis thresholding step in the Canny edge detection algorithm. It is crucial for distinguishing strong edges in the image.
- Comfy dtype:
INT
- Python dtype:
int
resolution
- The resolution parameter specifies the resolution to which the input image will be resized before applying the Canny edge detection algorithm.
- Comfy dtype:
INT
- Python dtype:
int
Output types¶
image
- Comfy dtype:
IMAGE
- The output is an image where the edges have been highlighted using the Canny edge detection algorithm.
- Python dtype:
numpy.ndarray
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes:
Source code¶
class Canny_Edge_Preprocessor:
@classmethod
def INPUT_TYPES(s):
return create_node_input_types(
low_threshold=("INT", {"default": 100, "min": 0, "max": 255, "step": 1}),
high_threshold=("INT", {"default": 200, "min": 0, "max": 255, "step": 1})
)
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "ControlNet Preprocessors/Line Extractors"
def execute(self, image, low_threshold, high_threshold, resolution=512, **kwargs):
from controlnet_aux.canny import CannyDetector
return (common_annotator_call(CannyDetector(), image, low_threshold=low_threshold, high_threshold=high_threshold, resolution=resolution), )