Skip to content

Diffusion Edge (batch size ↑ => speed ↑, VRAM ↑)

Documentation

  • Class name: DiffusionEdge_Preprocessor
  • Category: ControlNet Preprocessors/Line Extractors
  • Output node: False

The DiffusionEdge_Preprocessor node is designed for preprocessing images to extract edge maps using a diffusion-based edge detection model. It supports environment-specific model loading and adjustable patch processing for optimized performance.

Input types

Required

  • image
    • The input image to be processed for edge detection.
    • Comfy dtype: IMAGE
    • Python dtype: PIL.Image

Optional

  • environment
    • Specifies the environment context ('indoor', 'urban', 'natural') for the edge detection model, influencing the model's behavior and output.
    • Comfy dtype: COMBO[STRING]
    • Python dtype: str
  • patch_batch_size
    • Determines the batch size for processing image patches, affecting the speed and VRAM usage of the edge detection operation.
    • Comfy dtype: INT
    • Python dtype: int
  • resolution
    • The resolution to which the input image is resized before edge detection, affecting the detail level of the output.
    • Comfy dtype: INT
    • Python dtype: int

Output types

  • image
    • Comfy dtype: IMAGE
    • The output is an image representing the detected edges within the input image, suitable for further processing or visualization.
    • Python dtype: PIL.Image

Usage tips

  • Infra type: GPU
  • Common nodes: unknown

Source code

class DiffusionEdge_Preprocessor:
    @classmethod
    def INPUT_TYPES(s):
        return create_node_input_types(
            environment=(["indoor", "urban", "natrual"], {"default": "indoor"}),
            patch_batch_size=("INT", {"default": 4, "min": 1, "max": 16})
        )

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "execute"

    CATEGORY = "ControlNet Preprocessors/Line Extractors"

    def execute(self, image, environment="indoor", patch_batch_size=4, resolution=512, **kwargs):
        install_deps()
        from controlnet_aux.diffusion_edge import DiffusionEdgeDetector

        model = DiffusionEdgeDetector \
            .from_pretrained(filename = f"diffusion_edge_{environment}.pt") \
            .to(model_management.get_torch_device())
        out = common_annotator_call(model, image, resolution=resolution, patch_batch_size=patch_batch_size)
        del model
        return (out, )