MiDaS Depth Map¶
Documentation¶
- Class name:
MiDaS-DepthMapPreprocessor
- Category:
ControlNet Preprocessors/Normal and Depth Estimators
- Output node:
False
This node preprocesses images to generate depth maps using the MiDaS model, enhancing the perception of depth in images for further processing or visualization.
Input types¶
Required¶
image
- The 'image' parameter is the input image to be processed for depth map generation, serving as the primary data for depth estimation.
- Comfy dtype:
IMAGE
- Python dtype:
numpy.ndarray
Optional¶
a
- The 'a' parameter adjusts the depth estimation sensitivity, influencing the depth map's perception of distance and depth.
- Comfy dtype:
FLOAT
- Python dtype:
float
bg_threshold
- The 'bg_threshold' parameter sets the threshold for background separation, aiding in distinguishing between foreground and background elements in the depth map.
- Comfy dtype:
FLOAT
- Python dtype:
float
resolution
- The 'resolution' parameter specifies the resolution at which the depth map should be generated, affecting the detail and quality of the output.
- Comfy dtype:
INT
- Python dtype:
int
Output types¶
image
- Comfy dtype:
IMAGE
- The output is an image representing the depth map, where pixel intensity corresponds to the estimated depth from the camera perspective.
- Python dtype:
numpy.ndarray
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes:
Source code¶
class MIDAS_Depth_Map_Preprocessor:
@classmethod
def INPUT_TYPES(s):
return create_node_input_types(
a = ("FLOAT", {"default": np.pi * 2.0, "min": 0.0, "max": np.pi * 5.0, "step": 0.05}),
bg_threshold = ("FLOAT", {"default": 0.1, "min": 0, "max": 1, "step": 0.05})
)
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
def execute(self, image, a, bg_threshold, resolution=512, **kwargs):
from controlnet_aux.midas import MidasDetector
# Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_depth2image.py
model = MidasDetector.from_pretrained().to(model_management.get_torch_device())
out = common_annotator_call(model, image, resolution=resolution, a=a, bg_th=bg_threshold)
del model
return (out, )