Zoe Depth Map¶
Documentation¶
- Class name:
Zoe-DepthMapPreprocessor
- Category:
ControlNet Preprocessors/Normal and Depth Estimators
- Output node:
False
This node is designed to preprocess images for depth map estimation using the Zoe Detector model. It adjusts the input image's resolution and processes it through the model to generate a depth map, which can be utilized for various applications such as 3D modeling and scene understanding.
Input types¶
Required¶
image
- The input image to be processed for depth map estimation. This image is the primary input for the Zoe Detector model to analyze and generate the corresponding depth map.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
Optional¶
resolution
- Specifies the resolution to which the input image should be resized before processing. This parameter allows for standardizing the input size for consistent depth map estimation across different images.
- Comfy dtype:
INT
- Python dtype:
int
Output types¶
image
- Comfy dtype:
IMAGE
- The output depth map generated from the input image. This depth map provides a per-pixel estimation of depth, useful for understanding the scene's spatial layout.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes:
Source code¶
class Zoe_Depth_Map_Preprocessor:
@classmethod
def INPUT_TYPES(s):
return create_node_input_types()
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
def execute(self, image, resolution=512, **kwargs):
from controlnet_aux.zoe import ZoeDetector
model = ZoeDetector.from_pretrained().to(model_management.get_torch_device())
out = common_annotator_call(model, image, resolution=resolution)
del model
return (out, )