Pack SDXL Tuple¶
Documentation¶
- Class name:
Pack SDXL Tuple
- Category:
Efficiency Nodes/Misc
- Output node:
False
The Pack SDXL Tuple node is designed to aggregate multiple model and conditioning parameters into a single, structured tuple. This facilitates the efficient handling and transfer of a comprehensive set of parameters between different stages of a generative AI pipeline, particularly in scenarios involving base and refiner models along with their respective conditioning inputs.
Input types¶
Required¶
base_model
- Represents the base generative model to be included in the tuple, playing a crucial role in the initial stages of generation.
- Comfy dtype:
MODEL
- Python dtype:
str
base_clip
- Specifies the base CLIP model used for guiding the generation towards the desired outcome.
- Comfy dtype:
CLIP
- Python dtype:
str
base_positive
- Defines positive conditioning inputs for the base model, influencing the direction of content generation.
- Comfy dtype:
CONDITIONING
- Python dtype:
str
base_negative
- Describes negative conditioning inputs for the base model, used to steer away from undesired content.
- Comfy dtype:
CONDITIONING
- Python dtype:
str
refiner_model
- Represents the refiner model that fine-tunes or enhances the output of the base model.
- Comfy dtype:
MODEL
- Python dtype:
str
refiner_clip
- Specifies the refiner CLIP model used for additional guidance in the refining stage.
- Comfy dtype:
CLIP
- Python dtype:
str
refiner_positive
- Defines positive conditioning inputs for the refiner model, further directing the refinement process.
- Comfy dtype:
CONDITIONING
- Python dtype:
str
refiner_negative
- Describes negative conditioning inputs for the refiner model, helping to eliminate undesired aspects in the refinement stage.
- Comfy dtype:
CONDITIONING
- Python dtype:
str
Output types¶
SDXL_TUPLE
- Comfy dtype:
SDXL_TUPLE
- The structured tuple containing all specified models and conditioning inputs, ready for use in subsequent processing stages.
- Python dtype:
Tuple[str, str, str, str, str, str, str, str]
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes:
Source code¶
class TSC_Pack_SDXL_Tuple:
@classmethod
def INPUT_TYPES(cls):
return {"required": {"base_model": ("MODEL",),
"base_clip": ("CLIP",),
"base_positive": ("CONDITIONING",),
"base_negative": ("CONDITIONING",),
"refiner_model": ("MODEL",),
"refiner_clip": ("CLIP",),
"refiner_positive": ("CONDITIONING",),
"refiner_negative": ("CONDITIONING",),},}
RETURN_TYPES = ("SDXL_TUPLE",)
RETURN_NAMES = ("SDXL_TUPLE",)
FUNCTION = "pack_sdxl_tuple"
CATEGORY = "Efficiency Nodes/Misc"
def pack_sdxl_tuple(self, base_model, base_clip, base_positive, base_negative,
refiner_model, refiner_clip, refiner_positive, refiner_negative):
return ((base_model, base_clip, base_positive, base_negative,
refiner_model, refiner_clip, refiner_positive, refiner_negative),)