Empty Latent Ratio Select SDXL (Mikey)¶
Documentation¶
- Class name:
Empty Latent Ratio Select SDXL
- Category:
Mikey/Latent
- Output node:
False
This node is designed to generate a tensor representing an empty latent space based on a selected ratio from predefined options. It facilitates the creation of a latent space with specific dimensions that adhere to a user-selected aspect ratio, enabling the generation of content with desired proportions.
Input types¶
Required¶
ratio_selected
- Specifies the aspect ratio for the latent space to be generated. It determines the dimensions of the resulting latent space, ensuring that the generated content aligns with the selected proportions.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
Tuple[str]
batch_size
- Determines the number of latent spaces to generate in a single batch. It allows for the efficient creation of multiple latent spaces with the same dimensions in one operation.
- Comfy dtype:
INT
- Python dtype:
int
Output types¶
latent
- Comfy dtype:
LATENT
- The generated tensor representing the empty latent space. It is structured to match the dimensions dictated by the selected aspect ratio and batch size.
- Python dtype:
Dict[str, torch.Tensor]
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes:
Source code¶
class EmptyLatentRatioSelector:
@classmethod
def INPUT_TYPES(s):
s.ratio_sizes, s.ratio_dict = read_ratios()
return {'required': {'ratio_selected': (s.ratio_sizes,),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
RETURN_TYPES = ('LATENT',)
FUNCTION = 'generate'
CATEGORY = 'Mikey/Latent'
def generate(self, ratio_selected, batch_size=1):
width = self.ratio_dict[ratio_selected]["width"]
height = self.ratio_dict[ratio_selected]["height"]
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
return ({"samples":latent}, )