Color Blend¶
Documentation¶
- Class name:
ColorBlend
- Category:
stability/image/postprocessing
- Output node:
False
The ColorBlend node is designed to blend two images, specifically a black and white layer with a color layer, to produce a single image that combines the luminosity of the black and white layer with the color information of the color layer. This blending process is achieved through a sophisticated manipulation of color spaces and image processing techniques.
Input types¶
Required¶
bw_layer
- The black and white layer image to be blended. It serves as the base for the luminosity channel in the blending process, influencing the final image's light and dark areas.
- Comfy dtype:
IMAGE
- Python dtype:
numpy.ndarray
color_layer
- The color layer image to be blended. This layer provides the color information for the blending process, affecting the final image's coloration and vibrancy.
- Comfy dtype:
IMAGE
- Python dtype:
numpy.ndarray
Output types¶
image
- Comfy dtype:
IMAGE
- The result of blending the black and white layer with the color layer, producing an image that combines the luminosity of the former with the color information of the latter.
- Python dtype:
numpy.ndarray
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes:
Source code¶
class ColorBlend:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"bw_layer": ("IMAGE",),
"color_layer": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "color_blending_mode"
CATEGORY = "stability/image/postprocessing"
def color_blending_mode(self, bw_layer, color_layer):
if bw_layer.shape[0] < color_layer.shape[0]:
bw_layer = bw_layer.repeat(color_layer.shape[0], 1, 1, 1)[:color_layer.shape[0]]
if bw_layer.shape[0] > color_layer.shape[0]:
color_layer = color_layer.repeat(bw_layer.shape[0], 1, 1, 1)[:bw_layer.shape[0]]
batch_size, height, width, _ = bw_layer.shape
tensor_output = torch.empty_like(bw_layer)
image1 = bw_layer.cpu()
image2 = color_layer.cpu()
if image1.shape != image2.shape:
#print(image1.shape)
#print(image2.shape)
image2 = image2.permute(0, 3, 1, 2)
image2 = comfy.utils.common_upscale(image2, image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center')
image2 = image2.permute(0, 2, 3, 1)
image1 = (image1 * 255).to(torch.uint8).numpy()
image2 = (image2 * 255).to(torch.uint8).numpy()
for i in range(batch_size):
blend = color_blend(image1[i],image2[i])
blend = np.stack([blend])
tensor_output[i:i+1] = (torch.from_numpy(blend.transpose(0, 3, 1, 2))/255.0).permute(0, 2, 3, 1)
return (tensor_output,)