ControlLoraSave¶
Documentation¶
- Class name:
ControlLoraSave
- Category:
stability/controlnet
- Output node:
True
The ControlLoraSave node is designed to save the modified state of a model and its control network to a file, incorporating LoRA (Low-Rank Adaptation) adjustments. This process involves extracting and storing LoRA parameters from the model's and control network's state dictionaries, and saving them in a specified output directory.
Input types¶
Required¶
model
- The model parameter represents the neural network model whose state is to be saved with LoRA adjustments. It is crucial for capturing the model's current configuration and modifications.
- Comfy dtype:
MODEL
- Python dtype:
torch.nn.Module
control_net
- The control_net parameter signifies the control network associated with the model, which is essential for extracting and applying LoRA adjustments to the model's parameters.
- Comfy dtype:
CONTROL_NET
- Python dtype:
ControlNet
filename_prefix
- The filename_prefix parameter specifies the prefix for the output file names, allowing for organized storage and easy identification of saved models.
- Comfy dtype:
STRING
- Python dtype:
str
rank
- The rank parameter determines the rank of the LoRA adjustments, influencing the granularity and extent of modifications applied to the model's parameters.
- Comfy dtype:
INT
- Python dtype:
int
Output types¶
The node doesn't have output types
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class ControlLoraSave:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"control_net": ("CONTROL_NET",),
"filename_prefix": ("STRING", {"default": "controlnet_loras/ComfyUI_control_lora"}),
"rank": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 8}),
},}
RETURN_TYPES = ()
FUNCTION = "save"
OUTPUT_NODE = True
CATEGORY = "stability/controlnet"
def save(self, model, control_net, filename_prefix, rank):
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
output_sd = {}
prefix_key = "diffusion_model."
stored = set()
comfy.model_management.load_models_gpu([model])
f = model.model_state_dict()
c = control_net.control_model.state_dict()
for k in f:
if k.startswith(prefix_key):
ck = k[len(prefix_key):]
if ck not in c:
ck = "control_model.{}".format(ck)
if ck in c:
model_weight = f[k]
if len(model_weight.shape) >= 2:
diff = c[ck].float().to(model_weight.device) - model_weight.float()
out = extract_lora(diff, rank)
name = ck
if name.endswith(".weight"):
name = name[:-len(".weight")]
out1_key = "{}.up".format(name)
out2_key = "{}.down".format(name)
output_sd[out1_key] = out[0].contiguous().half().cpu()
output_sd[out2_key] = out[1].contiguous().half().cpu()
else:
output_sd[ck] = c[ck]
print(ck, c[ck].shape)
stored.add(ck)
for k in c:
if k not in stored:
output_sd[k] = c[k].half()
output_sd["lora_controlnet"] = torch.tensor([])
output_checkpoint = f"{filename}_{counter:05}_.safetensors"
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
comfy.utils.save_torch_file(output_sd, output_checkpoint, metadata=None)
return {}