Tiled KSampler¶
Documentation¶
- Class name:
Tiled KSampler
- Category:
Sampling/Tiled
- Output node:
False
The Tiled KSampler node is designed for advanced sampling in generative models, specifically tailored for handling tiled inputs. It incorporates circular padding and customizable sampling strategies to generate high-quality latent representations.
Input types¶
Required¶
model
- The generative model used for sampling. It's crucial for defining the architecture and parameters that will be used during the sampling process.
- Comfy dtype:
MODEL
- Python dtype:
torch.nn.Module
seed
- A seed value to ensure reproducibility of the sampling process. It influences the randomness of the generated samples.
- Comfy dtype:
INT
- Python dtype:
int
tiling
- A flag indicating whether circular padding should be applied, enhancing the quality of tiled samples.
- Comfy dtype:
INT
- Python dtype:
int
steps
- The number of steps to perform during the sampling process, affecting the detail and quality of the generated samples.
- Comfy dtype:
INT
- Python dtype:
int
cfg
- A configuration parameter influencing the sampling process, allowing for fine-tuning of the generative model's behavior.
- Comfy dtype:
FLOAT
- Python dtype:
float
sampler_name
- The name of the sampler to use, determining the specific sampling strategy employed.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
scheduler
- The scheduler to use, controlling the progression of sampling steps and potentially improving sample quality.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
positive
- Positive conditioning information to guide the sampling towards desired characteristics.
- Comfy dtype:
CONDITIONING
- Python dtype:
Dict[str, torch.Tensor]
negative
- Negative conditioning information to steer the sampling away from undesired characteristics.
- Comfy dtype:
CONDITIONING
- Python dtype:
Dict[str, torch.Tensor]
latent_image
- An initial latent image to start the sampling from, allowing for modifications or enhancements of existing samples.
- Comfy dtype:
LATENT
- Python dtype:
Dict[str, torch.Tensor]
denoise
- A parameter to control the denoising strength during sampling, affecting the clarity and sharpness of the generated samples.
- Comfy dtype:
FLOAT
- Python dtype:
float
Output types¶
latent
- Comfy dtype:
LATENT
- The generated latent representation, which can be further processed or converted into a final image.
- Python dtype:
Dict[str, torch.Tensor]
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class Tiled_KSampler:
@classmethod
def INPUT_TYPES(cls):
return {"required":
{"model": ("MODEL", ),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"tiling": ("INT", {"default": 1, "min": 0, "max": 1}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"latent_image": ("LATENT", ),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "sample"
CATEGORY = "Sampling/Tiled"
def apply_circular(self, model, enable):
for layer in [layer for layer in model.modules() if isinstance(layer, torch.nn.Conv2d)]:
layer.padding_mode = 'circular' if enable else 'zeros'
def sample(self, model, seed, tiling, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
self.apply_circular(model.model, tiling == 1)
return nodes.common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)