Lora Loader¶
Documentation¶
- Class name:
Lora Loader
- Category:
WAS Suite/Loaders
- Output node:
False
The LoraLoader node is designed to dynamically load and apply LoRA (Low-Rank Adaptation) adjustments to given models and CLIP instances, enhancing their capabilities or altering their behavior based on specified LoRA parameters and strengths.
Input types¶
Required¶
model
- The model to which the LoRA adjustments will be applied. It's crucial for defining the base architecture that will be enhanced or modified.
- Comfy dtype:
MODEL
- Python dtype:
torch.nn.Module
clip
- The CLIP instance to which the LoRA adjustments will be applied, allowing for modifications in its behavior or performance.
- Comfy dtype:
CLIP
- Python dtype:
torch.nn.Module
lora_name
- The name of the LoRA file containing the adjustments to be applied. It determines the specific LoRA modifications that will be loaded and applied.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
strength_model
- Defines the intensity of the LoRA adjustments applied to the model. It influences how significantly the model's behavior is altered.
- Comfy dtype:
FLOAT
- Python dtype:
float
strength_clip
- Defines the intensity of the LoRA adjustments applied to the CLIP instance. It influences how significantly the CLIP's behavior is altered.
- Comfy dtype:
FLOAT
- Python dtype:
float
Output types¶
MODEL
- Comfy dtype:
MODEL
- The model with applied LoRA adjustments, reflecting enhanced or altered capabilities.
- Python dtype:
torch.nn.Module
- Comfy dtype:
CLIP
- Comfy dtype:
CLIP
- The CLIP instance with applied LoRA adjustments, reflecting modifications in behavior or performance.
- Python dtype:
torch.nn.Module
- Comfy dtype:
NAME_STRING
- Comfy dtype:
STRING
- The name of the LoRA file applied, providing a reference to the specific adjustments made.
- Python dtype:
str
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes:
Source code¶
class WAS_Lora_Loader:
def __init__(self):
self.loaded_lora = None;
@classmethod
def INPUT_TYPES(s):
file_list = comfy_paths.get_filename_list("loras")
file_list.insert(0, "None")
return {"required": { "model": ("MODEL",),
"clip": ("CLIP", ),
"lora_name": (file_list, ),
"strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL", "CLIP", TEXT_TYPE)
RETURN_NAMES = ("MODEL", "CLIP", "NAME_STRING")
FUNCTION = "load_lora"
CATEGORY = "WAS Suite/Loaders"
def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
if strength_model == 0 and strength_clip == 0:
return (model, clip)
lora_path = comfy_paths.get_full_path("loras", lora_name)
lora = None
if self.loaded_lora is not None:
if self.loaded_lora[0] == lora_path:
lora = self.loaded_lora[1]
else:
temp = self.loaded_lora
self.loaded_lora = None
del temp
if lora is None:
lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
self.loaded_lora = (lora_path, lora)
model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
return (model_lora, clip_lora, os.path.splitext(os.path.basename(lora_name))[0])