Masks Combine Regions¶
Documentation¶
- Class name:
Masks Combine Regions
- Category:
WAS Suite/Image/Masking
- Output node:
False
The node is designed to merge or combine multiple mask regions into a single cohesive mask. This process is essential for applications requiring unified mask representations from segmented or individually processed mask regions.
Input types¶
Required¶
mask_a
- The 'mask_a' parameter represents one of the individual mask regions to be combined. It is a crucial part of the input set for generating a unified mask.
- Comfy dtype:
MASK
- Python dtype:
torch.Tensor
mask_b
- The 'mask_b' parameter is another individual mask region that contributes to the creation of a unified mask. It is essential for the combination process.
- Comfy dtype:
MASK
- Python dtype:
torch.Tensor
Optional¶
mask_c
- The 'mask_c' parameter is an optional mask region that can be included in the combination process to contribute to the unified mask.
- Comfy dtype:
MASK
- Python dtype:
torch.Tensor
mask_d
- The 'mask_d' parameter is an optional mask region that can be included in the combination process to contribute to the unified mask.
- Comfy dtype:
MASK
- Python dtype:
torch.Tensor
mask_e
- The 'mask_e' parameter is an optional mask region that can be included in the combination process to contribute to the unified mask.
- Comfy dtype:
MASK
- Python dtype:
torch.Tensor
mask_f
- The 'mask_f' parameter is an optional mask region that can be included in the combination process to contribute to the unified mask.
- Comfy dtype:
MASK
- Python dtype:
torch.Tensor
Output types¶
mask
- Comfy dtype:
MASK
- The 'mask' output represents the unified mask generated by combining the input mask regions. It is significant for downstream tasks that require a single, comprehensive mask representation.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class WAS_Mask_Combine:
def __init__(self):
self.WT = WAS_Tools_Class()
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mask_a": ("MASK",),
"mask_b": ("MASK",),
},
"optional": {
"mask_c": ("MASK",),
"mask_d": ("MASK",),
"mask_e": ("MASK",),
"mask_f": ("MASK",),
}
}
CATEGORY = "WAS Suite/Image/Masking"
RETURN_TYPES = ("MASK",)
FUNCTION = "combine_masks"
def combine_masks(self, mask_a, mask_b, mask_c=None, mask_d=None, mask_e=None, mask_f=None):
masks = [mask_a, mask_b]
if mask_c:
masks.append(mask_c)
if mask_d:
masks.append(mask_d)
if mask_e:
masks.append(mask_e)
if mask_f:
masks.append(mask_f)
combined_mask = torch.sum(torch.stack(masks, dim=0), dim=0)
combined_mask = torch.clamp(combined_mask, 0, 1) # Ensure values are between 0 and 1
return (combined_mask, )