SAM Parameters Combine¶
Documentation¶
- Class name:
SAM Parameters Combine
- Category:
WAS Suite/Image/Masking
- Output node:
False
This node combines the parameters of two SAM (Spatial Attention Model) operations, effectively merging their points and labels into a single set. It's designed to facilitate the application of multiple SAM operations on a single image or dataset by consolidating their parameters for streamlined processing.
Input types¶
Required¶
sam_parameters_a
- The first set of SAM parameters to be combined. It includes points and labels that specify regions of interest and their corresponding labels in an image.
- Comfy dtype:
SAM_PARAMETERS
- Python dtype:
Dict[str, np.ndarray]
sam_parameters_b
- The second set of SAM parameters to be combined. Similar to the first, it includes points and labels for regions of interest in an image.
- Comfy dtype:
SAM_PARAMETERS
- Python dtype:
Dict[str, np.ndarray]
Output types¶
sam_parameters
- Comfy dtype:
SAM_PARAMETERS
- The combined SAM parameters, including points and labels from both input sets, ready for use in subsequent SAM operations.
- Python dtype:
Dict[str, np.ndarray]
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class WAS_SAM_Combine_Parameters:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(self):
return {
"required": {
"sam_parameters_a": ("SAM_PARAMETERS",),
"sam_parameters_b": ("SAM_PARAMETERS",),
}
}
RETURN_TYPES = ("SAM_PARAMETERS",)
FUNCTION = "sam_combine_parameters"
CATEGORY = "WAS Suite/Image/Masking"
def sam_combine_parameters(self, sam_parameters_a, sam_parameters_b):
parameters = {
"points": np.concatenate(
(sam_parameters_a["points"],
sam_parameters_b["points"]),
axis=0
),
"labels": np.concatenate(
(sam_parameters_a["labels"],
sam_parameters_b["labels"])
)
}
return (parameters,)