Text to Conditioning¶
Documentation¶
- Class name:
Text to Conditioning
- Category:
WAS Suite/Text/Operations
- Output node:
False
The 'Text to Conditioning' node is designed to convert textual input into a conditioning format suitable for further processing or generation tasks. It leverages an encoding mechanism to transform the input text and associated CLIP model information into a structured conditioning output.
Input types¶
Required¶
clip
- The 'clip' parameter represents the CLIP model information required for encoding the text. It plays a crucial role in the text-to-conditioning conversion process, influencing the encoding outcome.
- Comfy dtype:
CLIP
- Python dtype:
object
text
- The 'text' parameter is the textual input that needs to be converted into a conditioning format. Its content directly affects the resulting conditioning output, making it a key component of the node's functionality.
- Comfy dtype:
STRING
- Python dtype:
str
Output types¶
conditioning
- Comfy dtype:
CONDITIONING
- The output is a conditioning format derived from the encoded text and CLIP model information, ready for use in subsequent processing or generation tasks.
- Python dtype:
tuple
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes:
Source code¶
class WAS_Text_to_Conditioning:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"clip": ("CLIP",),
"text": (TEXT_TYPE, {"forceInput": (True if TEXT_TYPE == 'STRING' else False)}),
}
}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "text_to_conditioning"
CATEGORY = "WAS Suite/Text/Operations"
def text_to_conditioning(self, clip, text):
encoder = nodes.CLIPTextEncode()
encoded = encoder.encode(clip=clip, text=text)
return (encoded[0], { "ui": { "string": text } })